This webinar will cover optimized, scientifically based lyophilization cycle development for pharmaceutical, diagnostic, and food products. It will include a discussion on the thermal properties of products, how they affect freeze-drying, and the analytical techniques used to determine these. Additionally, each step of the lyophilization process will be broken down and looked at individually to understand how each step is developed and optimized. Finally, a case study on cycle development will be covered in detail.
Areas Covered in the Session:
Thermal characterization including DSC and FDM
Understanding the effects of working with crystalline vs. amorphous components
The problem with working with a metastable glassy system and the use of annealing to correct this problem
Determining optimal shelf temperatures for the freezing step
Determining optimal shelf temperatures and chamber pressures for the primary drying step
Determining optimal shelf temperatures and chamber pressures for the secondary drying step
Characterization of the finished lyophilized product
Why should you attend:
Optimized lyophilization cycle design can be an extremely difficult and daunting task for the scientist that is unskilled or under skilled in the process. This is becoming even more prevalent as many of the molecules coming out of discovery are more complex, unstable, and require a very specific, multi component formulation to impart not only good chemical stability and physical stability to the active ingredient, but also good physical stability to the dried solids themselves. Unfortunately, many of the molecules that are used to help stabilize the chemical and physical stability of the active ingredient, impart poor physical stability to the dried solids and can make lyophilization cycle design difficult. The development scientist who understands and can apply these principles, will be much better equipped to develop robust cycles that can be used to produce quality products consistently, in the shortest amount of time possible, saving time and money. This seminar will start out with an introduction to thermal characterization including differential scanning calorimetry (DSC) and freeze-dry microscopy (FDM) and how the information gained from these techniques can be used as the foundation for optimized cycle design. Next, the seminar will discuss, in detail, the process of designing the freezing, primary, annealing (if used), and secondary drying protocols for the cycle. In each case, the process will be broken down to understand the correct choice of the different controllable lyopohilizer parameters including shelf temperature, chamber pressure, and hold times. Also discussed, will be some of the specialized tools that can be used to aid the development scientist in cycle development including, the sample thief, the Pirani gauge, and thermocouples.
This seminar will cover the process and benefits of using an empirical approach to design an optimized lyophilization cycle. In the past, a "trial and error” approach was routinely used as the means of cycle design, often resulting in products that were substandard or cycles that were prohibitively long and expensive. By taking the time to characterize the thermal properties of each formulation and understanding how to use this information correctly during each phase of cycle development, the process development scientist can ensure that a quality product meeting both chemical and physical quality specifications can be produced in the shortest amount of time possible.
Who will benefit: (Titles)
This webinar will provide valuable assistance to those companies involved in the handling of powders, lyophilized products, solid pharmaceutical dosage forms, and dried foods.
Quality Control Scientists
Development Scientists
Production Management
Quality Assurance
Areas Covered in the Session:
Thermal characterization including DSC and FDM
Understanding the effects of working with crystalline vs. amorphous components
The problem with working with a metastable glassy system and the use of annealing to correct this problem
Determining optimal shelf temperatures for the freezing step
Determining optimal shelf temperatures and chamber pressures for the primary drying step
Determining optimal shelf temperatures and chamber pressures for the secondary drying step
Characterization of the finished lyophilized product
Why should you attend:
Optimized lyophilization cycle design can be an extremely difficult and daunting task for the scientist that is unskilled or under skilled in the process. This is becoming even more prevalent as many of the molecules coming out of discovery are more complex, unstable, and require a very specific, multi component formulation to impart not only good chemical stability and physical stability to the active ingredient, but also good physical stability to the dried solids themselves. Unfortunately, many of the molecules that are used to help stabilize the chemical and physical stability of the active ingredient, impart poor physical stability to the dried solids and can make lyophilization cycle design difficult. The development scientist who understands and can apply these principles, will be much better equipped to develop robust cycles that can be used to produce quality products consistently, in the shortest amount of time possible, saving time and money. This seminar will start out with an introduction to thermal characterization including differential scanning calorimetry (DSC) and freeze-dry microscopy (FDM) and how the information gained from these techniques can be used as the foundation for optimized cycle design. Next, the seminar will discuss, in detail, the process of designing the freezing, primary, annealing (if used), and secondary drying protocols for the cycle. In each case, the process will be broken down to understand the correct choice of the different controllable lyopohilizer parameters including shelf temperature, chamber pressure, and hold times. Also discussed, will be some of the specialized tools that can be used to aid the development scientist in cycle development including, the sample thief, the Pirani gauge, and thermocouples.
This seminar will cover the process and benefits of using an empirical approach to design an optimized lyophilization cycle. In the past, a "trial and error” approach was routinely used as the means of cycle design, often resulting in products that were substandard or cycles that were prohibitively long and expensive. By taking the time to characterize the thermal properties of each formulation and understanding how to use this information correctly during each phase of cycle development, the process development scientist can ensure that a quality product meeting both chemical and physical quality specifications can be produced in the shortest amount of time possible.
Who will benefit: (Titles)
This webinar will provide valuable assistance to those companies involved in the handling of powders, lyophilized products, solid pharmaceutical dosage forms, and dried foods.
Quality Control Scientists
Development Scientists
Production Management
Quality Assurance